

Introduction Snapback Risks – How Much are we Mitigating?

What is a Mooring Line Snapback?

- Mooring lines are used to secure ships against a wharf.
- When tension is applied, line stores potential energy.
- If either the condition reduces or the tension increases, the line can break converting potential energy into kinetic.
- These events are a key danger in a port environment one in every seven snapped lines results in a fatality.

Risk Management

- The consequences have been understood for sometime, but there is limited industry guidance to assess the risks.
- Various mitigation strategies are used, most visibly in snapback barriers to provide shelter for personnel.
- The key uncertainties are likelihood and energy transfer.
- Each has little guidance within the traditional fields of structural and maritime engineering for assessment.

WGA's Previous Work Industry Experience

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

Our experience:

WGA have been involved in reviews for a number of clients from 2015 until the present day, including:

- BHP
- Rio Tinto
- FMG
- Southern Ports (Ports of Esperance and Albany)
- Midwest Ports Authority (Port of Geraldton)
- Pilbara Ports Authority (Port of Port Hedland)

The works have included:

- Snapback zone studies.
- Analysis of mooring line energies.
- Structural analysis of mooring line barriers.
- Bollard, ShoreTension and Quick Release Hook design.

We're not alone in the field!

3

WGA's Recent Work

Development of New Assessment Methods

Building on Previous Works

- Work was undertaken to review variety of existing mooring line barriers.
- To design for full energy with conservatism finds most (if not all!) barriers in service are inadequate.
- Data shows that most breakages happen well below the 100% MBL --> design energies may be much lower.

Action and Resistance Models

- 'Action Models' refer to the actions applied to a structural model – transfer of potential energy into applied kinetic energy.
- 'Resistance Models' refer to how that energy is arrested snapback barriers.

A Recap of the Last Presentation... Action Model – Energy of a Snapped Mooring Line

5

6

A Recap of the Last Presentation.. Resistance Model

Energy Absorption of a Snapback Barrier

- Traditional methods align with other analyses (e.g. berthing) adopting a force-displacement model (E=1/2kx²).
- Using non-linear structural behaviour, model considered solved when top of yield curve reached – no additional resistance for increased load.
- Some verification exercises undertaken 'for interest' disagreed wildly with each other.

Dynamic Transient Analysis

- Used a lumped mass applied at an initial velocity as the input energy.
- The relative mass of the two objects was extremely relevant to the behaviour of the barrier – force/displacement can be non-conservative!
- Relied on the work undertaken in the action model to prove

 understanding velocity and mass of rope portion that
 strikes enabled verification of models.

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

6

A Recap of the Last Presentation... Resistance Model

Energy Absorption of a Snapback Barrier

- Traditional methods align with other analyses (e.g. berthing) – adopting a force-displacement model (E=1/2kx²).
- Using non-linear structural behaviour, model considered solved when top of yield curve reached – no additional resistance for increased load.
- Some verification exercises undertaken 'for interest' disagreed wildly with each other.

Dynamic Transient Analysis

- Used a lumped mass applied at an initial velocity as the input energy.
- The relative mass of the two objects was extremely relevant to the behaviour of the barrier – force/displacement can be non-conservative!
- Relied on the work undertaken in the action model to prove

 understanding velocity and mass of rope portion that
 strikes enabled verification of models.

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

A Recap of the Last Presentation.. Bringing the Models Together!

Aime for the Medele	Objective	
 The initial aims were only to assess the effectiveness of mooring line barriers against design events. 	Derive action and resistance modeling for snapback barrier structures Determine Initial Models Quantify key variables and make assumptions	
 In trying to define the design event, a much broader understanding of the overall risks could be found. 	$\begin{tabular}{ c c c c c } \hline Action Model - Energy Transfer \\ \hline mpact Knwic Energy of \\ Mooring Line Failure Event \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$	
	teratively refine analysis based on outcomes The initial assessment may need review due to variables and assumptions	
	Review structured arrangement, determine a regression addition additional arrangement, determine a regression additional arrangement, determine arrangement Action Model Review Instituted of failure, Consider verables associated with kinds on energy, termine subsidie construction and or performance and and a second additional addited additional additional additional addited additional addition	
	Review snapback barriers for suitability on Provide recommendations	

9

What Is This All For? Analytical Methods for Risk Assessment

Aims for the Models

- The initial aims were only to assess the effectiveness of mooring line barriers against design events.
- In trying to define the design event, a much broader understanding of the overall risks could be found.

The Implications

- We could now go further and develop quantitative assessments of risk, rather than just qualitative.
- Alignment with the National Construction Code and ISO2394: General Principles on Reliability of Structures.
- Align design with limit state design to determine an ultimate design event.
- Framework allows for iterative refinement we're not finished yet!

What Is This All For? Analytical Methods for Risk Assessment

Aims for the Models

- The initial aims were only to assess the effectiveness of mooring line barriers against design events.
- In trying to define the design event, a much broader understanding of the overall risks could be found.

The Implications

- We could now go further and develop quantitative assessments of risk, rather than just qualitative.
- Alignment with the National Construction Code and ISO2394: General Principles on Reliability of Structures.
- Align design with limit state design to determine an ultimate design event.
- Framework allows for iterative refinement we're not finished yet!

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

11

Risk Assessment for Snapback Events Brief Overview

Risk Assessment Templates

- Consider the consequence and relative likelihood of an event occurring.
- Provide framework for assessing effectiveness of risk controls – either reducing the consequence or the likelihood of an event occurring.
- The guidance varies for different organisations, but the process is standardised.

Risk Assessment Process

- Define the event for snapback events, easier said than done!
- Assess the consequences.
- Assess the likelihood.
- Introduce controls to reduce either (or both).
- Re-assess until satisfied that risks are managed to acceptably low level.

D

с

Critical

Seriou

5 Very Likel

4 Likely

3

Possible

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

Consequence

What Happens if a Mooring Line Fails?

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

If no-one is there

- Consequences are relatively low maybe some property damage provided the vessel is still restrained.
- Removing personnel is an effective control; however,
- Expensive and often impractical to remove personnel at all times.

If a barrier is not present

- Relatively straight forward consequence of an event depends on whether personnel are in the line of fire or not.
- In the absence of a snapback path study, consequences can be up to and including fatality.

If a barrier is present

- Structurally we have to assess the effectiveness of the barrier against the design event.
- The design event is a function of likelihood! Lower energy events are more frequent than higher energy events.

13

13

Consequence What Happens if a Mooring Line Fails?

Source: Holmes Solutions https://www.youtube.com/watch?v=AHMdYf7XL14

If a barrier is present

- Structurally we have to assess the effectiveness of the barrier against the design event.
- The design event is a function of likelihood! Lower energy events are more frequent than higher energy events.

Consequence

What Happens if a Mooring Line Fails?

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

Source: Holmes Solutions https://www.youtube.com/watch?v=AHMdYf7XL14

If a barrier is present

- Structurally we have to assess the effectiveness of the barrier against the design event.
- The design event is a function of likelihood! Lower energy events are more frequent than higher energy events.

15

Likelihood

Does a Snapped Line Event Happen?

What we know?

- Snapped line events happen known problem.
- Data indicates that most events happen well below line MBL.
- Frequency changes port to port, berth to berth.
- Increase in load and/or a decrease in strength in the line.

Contributing factors

- Environmental tides, wind, wave.
- Vessel interaction.
- Human line management, vessel monitoring.
- Line condition wear, chafe.
- Mooring arrangement and infrastructure.

Answering the question

- Review history of events conditions, tension at break.
- Determine if it's a condition or management of line issue (likely combination).

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

Material	Construction	GMBL (kN)	Failure Load (kN)	% MBL at Failure
Nylon	DB	885	147	17%
Nylon	DB	885	490	55%
HMPE	Р	1410	402	29%
Nylon	Р	1870	402	21%
Nylon	DB	885	230	26%
Nylon	DB	885	170	19%
Nylon	DB	995	348	35%
Nylon	DB	995	259	26%
Nylon	DB	894	89.4	10%
Polypropylene	Ρ	814	216	27%

Likelihood

How much energy is in that mooring line?

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

What we know?

- Energy dependent on many factors.
- Energy is not distributed evenly!
- Frequency changes port to port, berth to berth.

Contributing factors

- Line properties material, diameter, elongations, strength.
- Line geometry length, orientation, mooring infrastructure.
- Condition at break how much capacity has the line got.
 100% MBL is unlikely, but what strength depends on the factors that contribute to the break (question 1).

Answering the question

- Identify a 'design line' type, properties. Easier on singleuse berths rather than multi-user facilities.
- Line length is an important variable usually longest lines have more energy, but shorter lines are stiffer.
- Determine a %MBL at break this part is difficult! Work in the 'does a line break' section will help define.

17

17

Likelihood

Does a line strike a work area, and is there a barrier?

What we know?

- Snapback paths are complex!
- Work areas can be defined by proximity to mooring infrastructure, may not be a true representation.
- Mooring arrangements vary.

Contributing factors

- Guidance is limited, usually defined by cones reflected.
- Operations procedures define when.
- Safety training and culture alerts workers to the risks and limits their times in danger zones.

Answering the question

- Berth-specific studies needed.
- Getting this wrong can actually increase risk false sense of safety.
- Further work can identify high risk, low risk and no risk areas – painting high-risk bullseyes spatially which are nogo zones.

Likelihood

What is the residual energy in a line at the time it reaches a barrier?

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

What we know?

- Snapback events are highly transient events.
- Potential energy = peak kinetic energy.
- This is not necessarily the kinetic energy at impact!

Contributing factors

- Berth geometry and the location of the impact into a barrier.
- Direct strikes have greater impact than glancing blows.

Answering the question

- Berth-specific studies needed.
- The results feed into the probabilistic assessment of the 'design event' – designing for the peak kinetic energy may not be practicable or necessary.

19

Likelihood

Is the mooring line barrier effective at stopping a broken mooring line?

What we know?

- Force-displacement design is not appropriate.
- Designing for the peak event may not be practical or necessary.

Contributing factors

- Dependent on the residual energy at strike.
- Many barriers not appropriately designed for dynamic event – centre sections fail before the foundations feel it.
- Consider inertial models to arrest momentum and absorb energy.

Answering the question

- Define the ultimate design event.
- Undertake analysis that models this design event.
- Undertake physical testing to validate analysis.
- Identify residual risks and determine if acceptable.

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

How can this be used? Assessment of control combinations

21

How can this be used? Assessment of control combinations

Alternative mooring methods	Bits, bollards and chocks review	
Personnel restrictions	Chafe guard	
Maintenance practices (shutdown	Snapback path studies	
only, drones, etc.)	Load sensing pins	
Alternative lines (materials, MBL guidance)	LIDAR monitoring	
Line inspection and rejection	Environmental monitoring	
Alternative mooring arrangements	Passing vessel interaction studies	
Improved line angles	Defining safe work areas	
Quick release hooks (set at %MBL)	Training	
Fenced off restricted zones	Ownership of vessel lines	
Mooring line barriers	Visual aids and signage	
Whip chocks	Safe working times (avoiding top of	
Shock absorbers	ide, weather innits, etc.)	
Overall probability of event ex	ceedance = y?	
WOA	·····	

GA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

How can this be used? Assessment of control combinations

Acknowledgements and Thankyou

Many acknowledgments required, from clients we've been working with:

- BHP
- Rio Tinto
- FMG
- Southern Ports
- Midwest Ports Authority
- Pilbara Ports Authority

Peers in the field, including:

- Holmes Solutions
- Baird Australia
- AECOM

Within WGA, Luke Campbell, Jordan Butler, Stephan Dickinson, Andrew Wharton and Ryan Donaldson

WGA Mooring Line Barriers – Better Understanding the Risks We're Mitigating

